首页> 外文OA文献 >Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation
【2h】

Anatomically Constrained Neural Networks (ACNN): Application to Cardiac Image Enhancement and Segmentation

机译:解剖学约束神经网络(aCNN):在心脏病中的应用   图像增强和分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Incorporation of prior knowledge about organ shape and location is key toimprove performance of image analysis approaches. In particular, priors can beuseful in cases where images are corrupted and contain artefacts due tolimitations in image acquisition. The highly constrained nature of anatomicalobjects can be well captured with learning based techniques. However, in mostrecent and promising techniques such as CNN based segmentation it is notobvious how to incorporate such prior knowledge. State-of-the-art methodsoperate as pixel-wise classifiers where the training objectives do notincorporate the structure and inter-dependencies of the output. To overcomethis limitation, we propose a generic training strategy that incorporatesanatomical prior knowledge into CNNs through a new regularisation model, whichis trained end-to-end. The new framework encourages models to follow the globalanatomical properties of the underlying anatomy (e.g. shape, label structure)via learned non-linear representations of the shape. We show that the proposedapproach can be easily adapted to different analysis tasks (e.g. imageenhancement, segmentation) and improve the prediction accuracy of thestate-of-the-art models. The applicability of our approach is shown onmulti-modal cardiac datasets and public benchmarks. Additionally, wedemonstrate how the learned deep models of 3D shapes can be interpreted andused as biomarkers for classification of cardiac pathologies.
机译:结合有关器官形状和位置的先验知识是改善图像分析方法性能的关键。特别地,在由于图像获取的限制而导致图像损坏并包含伪影的情况下,先验可能是有用的。可以通过基于学习的技术很好地捕获解剖对象的高度受限的性质。然而,在诸如基于CNN的分割之类的最新和有前途的技术中,如何整合这些现有知识并不是显而易见的。最先进的方法用作像素分类器,其中训练目标未纳入输出的结构和相互依存关系。为了克服这一限制,我们提出了一种通用的训练策略,该策略通过端到端训练的新的正则化模型将解剖学先验知识整合到CNN中。新框架鼓励模型通过学习的形状的非线性表示来遵循基础解剖结构的整体解剖学特性(例如形状,标签结构)。我们表明,所提出的方法可以轻松地适应不同的分析任务(例如,图像增强,分割)并提高最新模型的预测准确性。我们的方法的适用性在多模式心脏数据集和公共基准中得到了证明。此外,我们演示了如何将学习到的3D形状的深层模型解释和用作心脏病理学分类的生物标记。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号